281 research outputs found

    Development of Enzymes for Chemoenzymatic Synthesis

    Get PDF
    With various recombinant DNA and protein engineering techniques now available, enzyme-based technologies are emerging as practical and environmentally acceptable methods for the synthesis of chiral intermediates and complex bioactive molecules. While enzyme technology offers a new opportunity in the chemical and pharmaceutical industries, development of novel and useful enzyme-catalyzed transformations not easily attainable otherwise for large-scale processes remains to be a challenge in the field

    Enzymes for Glycoprotein Synthesis

    Get PDF
    More than 90% of human proteins are glycosylated and since protein glycosylation is understood to play a role in folding, trafficking, stability, immunogenicity, and function there is a need to generate pure protein glycoforms. Pure single protein glycoforms are difficult to obtain because the cellular machinary produces complex mixtures for any given protein. In this article an overview is given of various approaches used to generate specific single glycoforms of proteins, studies of the role of glycosylation in protein stability and function, and the imaging and identification of new glycoproteins related to cancer

    Macrolactamization of Glycosylated Peptide Thioesters by the Thioesterase Domain of Tyrocidine Synthetase

    Get PDF
    SummaryThe 35 kDa thioesterase (TE) domain excised from the megadalton tyrocidine synthetase (Tyc Syn) retains autonomous capacity to macrocyclize peptidyl thioesters to D-Phe1-L-Leu10-macrolactams. Since a number of nonribosomal peptides undergo O-glycosylation events during tailoring to gain biological activity, the Tyc Syn TE domain was evaluated for cyclization capacity with glycosylated peptidyl-S-NAC substrates. First, Tyr7 was replaced with Tyr(β-D-Gal) and Tyr(β-D-Glc) as well as with Ser-containing β-linked D-Gal, D-Glc, D-GlcNAc, and D-GlcNH2, and these new analogs were shown to be cyclized with comparable kcat/Km catalytic efficiency. Similarly, Gal- or tetra-O-acetyl-Gal-Ser could also be substituted at residues 5, 6, and 8 in the linear decapeptidyl-S-NAC sequences and cyclized without substantial loss in catalytic efficiency by Tyc Syn TE. The cyclic glycopeptides retained antibiotic activity as membrane perturbants in MIC assays, opening the possibility for library construction of cyclic glycopeptides by enzymatic macrocyclization

    Chemoenzymatic elaboration of monosaccharides using engineered cytochrome P450_(BM3) demethylases

    Get PDF
    Polysaccharides comprise an extremely important class of biopolymers that play critical roles in a wide range of biological processes, but the synthesis of these compounds is challenging because of their complex structures. We have developed a chemoenzymatic method for regioselective deprotection of monosaccharide substrates using engineered Bacillus megaterium cytochrome P450 (P450_(BM3)) demethylases that provides a highly efficient means to access valuable intermediates, which can be converted to a wide range of substituted monosaccharides and polysaccharides. Demethylases displaying high levels of regioselectivity toward a number of protected monosaccharides were identified using a combination of protein and substrate engineering, suggesting that this approach ultimately could be used in the synthesis of a wide range of substituted mono- and polysaccharides for studies in chemistry, biology, and medicine

    Ganoderma lucidum Polysaccharides Induce Macrophage-Like Differentiation in Human Leukemia THP-1 Cells via Caspase and p53 Activation

    Get PDF
    Differentiation therapy by induction of tumor cells is an important method in the treatment of hematological cancers such as leukemia. Tumor cell differentiation ends cancer cells' immortality, thus stopping cell growth and proliferation. In our previous study, we found that fucose-containing polysaccharide fraction F3 extracted from Ganoderma lucidum can bring about cytokine secretion and cell death in human leukemia THP-1 cells. This prompted us to further investigate on how F3 induces the differentiation in human leukemia cells. We integrated time-course microarray analysis and network modeling to study the F3-induced effects on THP-1 cells. In addition, we determined the differentiation effect using Liu's staining, nitroblue tetrazolium (NBT) reduction assay, flow cytometer, western blotting and Q-PCR. We also examined the modulation and regulation by F3 during the differentiation process. Dynamic gene expression profiles showed that cell differentiation was induced in F3-treated THP-1 cells. Furthermore, F3-treated THP-1 cells exhibited enhanced macrophage differentiation, as demonstrated by changes in cell adherence, cell cycle arrest, NBT reduction and expression of differentiation markers including CD11b, CD14, CD68, matrix metalloproteinase-9 and myeloperoxidase. In addition, caspase cleavage and p53 activation were found to be significantly enhanced in F3-treated THP-1 cells. We unraveled the role of caspases and p53 in F3-induced THP-1 cells differentiation into macrophages. Our results provide a molecular explanation for the differentiation effect of F3 on human leukemia THP-1 cells and offer a prospect for a potential leukemia differentiation therapy

    Saccharide Display on Microtiter Plates

    Get PDF
    AbstractNew insight into the importance of carbohydrates in biological systems underscores the need for rapid synthetic and screening procedures for them. Development of an organic synthesis-compatible linker that would attach saccharides to microtiter plates was therefore undertaken to facilitate research in glycobiology. Galactosyllipids containing small, hydrophobic groups at the anomeric position were screened for noncovalent binding to microtiter plates. When the lipid component was a saturated hydrocarbon between 13 and 15 carbons in length, the monosaccharide showed complete retention after aqueous washing and could be utilized in biological assays. This alkyl chain was also successfully employed with more complex oligosaccharides in biological assays. In light of these findings, this method of attachment of oligosaccharides to microtiter plates should be highly efficacious to high-throughput synthesis and analyses of carbohydrates in biological assays

    Ganoderma lucidum polysaccharides enhance CD14 endocytosis of LPS and promote TLR4 signal transduction of cytokine expression

    Full text link
    We have previously reported that a well-characterized glycoprotein fraction containing fucose residues in an extract of Ganoderma lucidum polysaccharides (EORP) exerts certain immuno-modulation activity by stimulating the expression of inflammatory cytokines via TLR4. Continuing our studies, we have demonstrated that EORP increases the surface expression of CD14 and TLR4 within murine macrophages J774A.1 cells in vitro, and further promotes LPS binding and uptake by J774A.1 cells in a CD14-dependent fashion. Moreover, we observed the co-localization of internalized LPS with lysosome- and Golgi-apparatus markers within 5 min after J774A.1 cells stimulated with LPS. In addition, EORP pretreatment of J774A.1 cells and human blood-derived primary macrophages, followed by LPS stimulation, results in the super-induction of interleukin-1beta (IL-1) expression. Endocytosis inhibitors: such as cytochalasin D and colchicine effectively block EORP-enhanced LPS internalization by J774A.1 cells; yet they fail to decrease the LPS-induced phosphorylation of certain mitogen-activated protein kinases, and IL-1 mRNA and proIL-1 protein expression, indicating that LPS internalization by J774A.1 cells is not associated with LPS-dependent activation. Our current results could provide a potential EORP-associated protection mechanism for bacteria infection by enhancing IL-1 expression and the clearance of contaminated LPS by macrophages. J. Cell. Physiol. 212: 537–550, 2007. © 2007 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/56052/1/21050_ftp.pd

    Structural basis for CD1d presentation of a sulfatide derived from myelin and its implications for autoimmunity

    Get PDF
    Sulfatide derived from the myelin stimulates a distinct population of CD1d-restricted natural killer T (NKT) cells. Cis-tetracosenoyl sulfatide is one of the immunodominant species in myelin as identified by proliferation, cytokine secretion, and CD1d tetramer staining. The crystal structure of mouse CD1d in complex with cis-tetracosenoyl sulfatide at 1.9 Å resolution reveals that the longer cis-tetracosenoyl fatty acid chain fully occupies the A′ pocket of the CD1d binding groove, whereas the sphingosine chain fills up the F′ pocket. A precise hydrogen bond network in the center of the binding groove orients and positions the ceramide backbone for insertion of the lipid tails in their respective pockets. The 3′-sulfated galactose headgroup is highly exposed for presentation to the T cell receptor and projects up and away from the binding pocket due to its β linkage, compared with the more intimate binding of the α-glactosyl ceramide headgroup to CD1d. These structure and binding data on sulfatide presentation by CD1d have important implications for the design of therapeutics that target T cells reactive for myelin glycolipids in autoimmune diseases of the central nervous system

    Enzymatic synthesis of sialyl Lex and derivatives based on a recombinant fucosyltransferase

    Full text link
    A recombinant human Lewis [alpha](1,3/1,4)fucosyltranferase has been studied for its acceptor substrate specificity and used in the synthesis of sialyl Lex and derivatives.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29619/1/0000708.pd
    corecore